BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and LSTMs

نویسنده

  • Mathieu Cliche
چکیده

In this paper we describe our attempt at producing a state-of-the-art Twitter sentiment classifier using Convolutional Neural Networks (CNNs) and Long Short Term Memory (LSTMs) networks. Our system leverages a large amount of unlabeled data to pre-train word embeddings. We then use a subset of the unlabeled data to fine tune the embeddings using distant supervision. The final CNNs and LSTMs are trained on the SemEval-2017 Twitter dataset where the embeddings are fined tuned again. To boost performances we ensemble several CNNs and LSTMs together. Our approach achieved first rank on all of the five English subtasks amongst 40 teams.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DUTH at SemEval-2017 Task 4: A Voting Classification Approach for Twitter Sentiment Analysis

This report describes our participation to SemEval-2017 Task 4: Sentiment Analysis in Twitter, specifically in subtasks A, B, and C. The approach for text sentiment classification is based on a Majority Vote scheme and combined supervised machine learning methods with classical linguistic resources, including bag-of-words and sentiment lexicon features.

متن کامل

ECNU at SemEval-2017 Task 4: Evaluating Effective Features on Machine Learning Methods for Twitter Message Polarity Classification

This paper reports our submission to subtask A of task 4 (Sentiment Analysis in Twitter, SAT) in SemEval 2017, i.e., Message Polarity Classification. We investigated several traditional Natural Language Processing (NLP) features, domain specific features and word embedding features together with supervised machine learning methods to address this task. Officially released results showed that ou...

متن کامل

ej-sa-2017 at SemEval-2017 Task 4: Experiments for Target oriented Sentiment Analysis in Twitter

This paper describes the system we have used for participating in Subtasks A (Message Polarity Classification) and B (TopicBased Message Polarity Classification according to a two-point scale) of SemEval2017 Task 4 Sentiment Analysis in Twitter. We used several features with a sentiment lexicon and NLP techniques, Maximum Entropy as a classifier for our system.

متن کامل

Amobee at SemEval-2017 Task 4: Deep Learning System for Sentiment Detection on Twitter

This paper describes the Amobee sentiment analysis system, adapted to compete in SemEval 2017 task 4. The system consists of two parts: a supervised training of RNN models based on a Twitter sentiment treebank, and the use of feedforward NN, Naive Bayes and logistic regression classifiers to produce predictions for the different sub-tasks. The algorithm reached the 3rd place on the 5-label clas...

متن کامل

UCSC-NLP at SemEval-2017 Task 4: Sense n-grams for Sentiment Analysis in Twitter

This paper describes the system submitted to SemEval-2017 Task 4-A Sentiment Analysis in Twitter developed by the UCSC-NLP team. We studied how relationships between sense n-grams and sentiment polarities can contribute to this task, i.e. co-occurrences of WordNet senses in the tweet, and the polarity. Furthermore, we evaluated the effect of discarding a large set of features based on char-gram...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017